jueves, 23 de septiembre de 2010

la ley de la potencia

Como ya se destacó anteriormente, las evidencias empíricas mostraban que \bold{J} (vector densidad de corriente) es directamente proporcional a \bold{E} (vector campo eléctrico). Para escribir ésta relación en forma de ecuación es necesario añadir una constante arbitraria, que posteriormente se llamó factor de conductividad eléctrica y que representaremos como s. Entonces:
\bold{J}={\sigma}{\bold{E}_r}
El vector \scriptstyle \bold{E}_r es el vector resultante de los campos que actúan en la sección de alambre que se va a analizar, es decir, del campo producido por la carga del alambre en sí y del campo externo, producido por una batería, una pila u otra fuente de fem. Por lo tanto:
\frac{\bold{J}}\sigma={\bold{E} + \bold{E}_{ext}}
Puesto que \bold{J} = (I/A)\bold{n}, donde \bold{n} es un vector unitario tangente al filamento por el que circula la corriente, con lo cual reemplazamos y multiplicamos toda la ecuación por un d\bold{l}:
\frac{I}{A\sigma}\bold{n} \cdot d\bold{l} = ({\bold{E} \cdot d\bold{l}
+ \bold{E}_{ext} \cdot d\bold{l}})
Como los vectores \bold{n} y d\bold{l} son paralelos su producto escalar coincide con el producto de sus magnitudes, además integrando ambos miembros en la longitud del conductor:

   \int_{1}^{2} \frac{I}{A\sigma} dl =
   \int_{1}^{2}{\bold{E} \cdot d\bold{l}} +
   \int_{1}^{2}{\bold{E}_{ext} \cdot d\bold{l}}
El miembro derecho representa el trabajo total de los campos que actúan en la sección de alambre que se está analizando, y de cada integral resulta:
\int_{1}^{2}{\vec E \cdot d\vec l} = \phi_{1} - \phi_{2}, \qquad \int_{1}^{2}{\vec E_{ext} \cdot d\vec l} = \xi
Donde φ1 − φ2 representa la diferencia de potencial entre los puntos 1 y 2, y ξ representa la fem; por tanto, podemos escribir:
\frac{I}{A\sigma} l_{12} = \phi_{1} - \phi_{2} + \xi = U_{12}
donde U12 representa la caída de potencial entre los puntos 1 y 2.
Donde σ representa la conductividad, y su inversa representa la resistividad ρ = 1/σ. Así:
\frac{I\rho}{A} l_{12} = U_{12}
Finalmente, la expresión \frac{\rho}{A} l_{12} es lo que se conoce como resistencia eléctrica.
Por tanto, podemos escribir la expresión final como lo dice abajo:
 I\cdot R_{12} = U_{12}

No hay comentarios:

Publicar un comentario